Green Chemistry

Green chemistry emerged from a variety of existing ideas and research efforts (such as atom economy and catalysis) in the period leading up to the 1990s, in the context of increasing attention to problems of chemical pollution and resource depletion. The development of green chemistry in Europe and the United States was linked to a shift in environmental problem-solving strategies: a movement from command and control regulation and mandated reduction of industrial emissions at the "end of the pipe," toward the active prevention of pollution through the innovative design of production technologies themselves.

For a technology to be considered Green Chemistry, it must accomplish three things:

It must be more environmentally benign than existing alternatives.

It must be more economically viable than existing alternatives.

It must be functionally equivalent to or outperform existing alternatives.

Green Chemistry presents industries with incredible opportunity for growth and competitive advantage. This is because there is currently a significant shortage of green technologies: we estimate that only 10% of current technologies are environmentally benign; another 25% could be made benign relatively easily. The remaining 65% have yet to be invented! Green Chemistry also creates cost savings: when hazardous materials are removed from materials and processes, all hazard-related costs are also removed, such as those associated with handling, transportation, disposal, and compliance. Through Green Chemistry, environmentally benign alternatives to current materials and technologies can be systematically introduced across all types of manufacturing to promote a more environmentally and economically sustainable future.